EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Data Scientist vs Business Analyst

By Nilam LambadeNilam Lambade

Home » Data Science » Data Science Tutorials » Head to Head Differences Tutorial » Data Scientist vs Business Analyst

Data Scientist vs Business Analyst

Difference between Data Scientist and Business Analyst

Data is playing a major role in the growth of any business exponentially. For the data to be understood with its trends, it requires lots of analysis and research. It requires special skills which help in understanding the pattern of data and to come to a conclusion that how will the data lead to a growth of business and how changing functionalities will bring in the necessary change. This job is mutually done by data scientists and business analysts. Though both these roles help in the expansion of any field, they both Data Scientist vs Business Analyst have their own roles and responsibilities which differ in their own ways. Let us understand the differences that are there between a data scientist and business analyst. Although the main motto of both these jobs is business growth, the variance in the actual work that they do will be seen further.

All in One Data Science Bundle (360+ Courses, 50+ projects)
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (78,011 ratings)
View Course

Head to Head Comparison between Data Scientist and Business Analyst

Below is the Top 5  difference between Data Scientist and Business Analyst:

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Data Scientist vs Business Analyst Infographics

Key Differences Between Data Scientist and Business Analyst

Though both these roles seem to have a similar difference between Data Scientist and Business Analyst differ in following ways:

  • A data scientist needs to analyze large amounts of data, should be able to manipulate and make necessary changes using mathematical and statistical operations. They also need to discover new patterns and make future predictions. They must have technical knowledge and also should know languages like Python, R, etc. On the other hand, business analysts must have knowledge of end to end business. They should know the impacts of changes with it and try to bring out changes that will increase customer as well as employee productivity. They should collaborate and communicate constantly with stakeholders and have a clear-cut picture of needs. They must also help in designing the IT system from a business point of view and coordinate with them.
  • The need for data scientists came up when we had an ever-increasing need for synchronization between data and IT industry. All departments in a company require a data analyst these days. They provide a sophisticated analysis through their programming expertise and without waiting for any inputs from IT industry. They just require data and they can go ahead with their analysis which will bring the organization to a new competition level and also unfold hidden trends and patterns which will help the organization lead in the market. Business Analysts are needed to bring a change in the existing functioning of the business. They must analyze the current practices and bring a change which will be more effective and profitable to the organization. They should come up with questions with project customer, the end users and subject matter experts. Next, the total requirements that are gathered need to be documented with the definition and need for the change. Business analysts are the ones who bring precision to estimates in the project schedules.
  • The duties of data scientists involve data visualization where they need to explore the data and find hidden details from the data which will reveal the current trends and also help them model patterns which in turn help in predicting future recommendations. They must be well versed in machine learning and data mining which will help in building analytics applications for having high profits in the market. They must communicate technical findings to sales and marketing teams. A business analyst needs to identify stakeholders, analyze and document the requirements. They must evaluate the proposed solutions and communicate them with all stakeholders. Once that is done they will be executing the changes with a development team and following up with deadlines. They are also expected to conduct user acceptance test and gain acceptance from a client. After this, they are also responsible for creating user manuals and final documentation.
  • The main tools that a data scientist uses are data warehousing, data visualization, machine learning and languages like Python, R, and SQL. Business analysts, on the other hand, have commercial software’s like i Rise, Jama, BitImpluse which help in providing solutions across different industries.

Data Scientist and Business Analyst Comparison Table

Following is the comparison table between Data Scientist and Business Analyst

Basis for Comparison Data Scientist Business Analyst
Basic Difference Data Science is all about finding out new things, a revelation of new data which will solve complex problems. Finding conclusions through statistics through mere observation and gradually reaching the perfect optimized solution is the job of a data scientist Business Analysts are a platform between IT and business stakeholders. They need to have a deep business knowledge and need to be involved in demanding questions to get value for money and bring value to developments done in IT industry.
Requirement A data scientist needs to have knowledge about all latest tools, SQL and if required they may need to code. They should have in-depth knowledge of mathematics and statistics. Business analysts may not require any technical knowledge. They must be comfortable in assessing changes, developing business cases and defining new requirements or changes in a project from the functional perspective.
History Data analysis though seems to be a new rage these days, it dates back to 1962 when John Tukey wrote about ‘The Future of Data Analysis’. Post that there were mentions about this and it started trending from 2006, through 2011 till now where data scientists are the most sought job profiles. Business Analysts came to the rising in the 1970s when they started documenting all manual processes. They found the need to automate repetitive tasks, identify problems and deliver good quality technology at the expense of business needs. Through 1980s Business Analysts evolved to support business goals and be a mediator more effectively between IT resources and business resources.
Responsibilities A data scientist has to handle and extract large amounts of data. This requires in-depth knowledge of SQL to segregate datasets. They must have advanced knowledge of machine learning so that they can make changes in data by themselves and get a deeper insight. Business Analysts need to gather and prepare requirements. They must prepare documents and also analyze and model all requirements. Post analysis they must take over the changes that are required and convey the same to IT team. Once changes are done they must perform acceptance testing to check if the requirements are met.
Tools Tools of data scientists are none other than Data warehousing, Data visualization, and machine learning. There are various tools for business analysis like Blueprint, Axure, Bit impulse, etc. which make improve productivity.

Conclusion

Thus, both of them perform the job of increasing the value of a business. The different roles and responsibilities that they perform help an organization knowing its value and they provide a way of improving and increasing its market value. The process improvements by business analysts and the predictions done by data scientists assist the company to have a safe present and a bright future.

Recommended Articles

This has been a guide to Data Scientist vs Business Analyst. Here we have discussed Data Scientist vs Business Analyst head to head comparison, key difference along with infographics and comparison table. You may also look at the following articles to learn more –

  1. Business Analytics vs Business Intelligence
  2. 7 Most Useful Comparison Between Business Analytics Vs Predictive Analytics
  3. Business Intelligence vs Business Analytics – Which One Is Better
  4. 9 Awesome Difference Between Data Science Vs Data Mining
  5. Computer Science vs Data Science – Find Out The Best 8 Comparisons

All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More


12 Shares
Share
Tweet
Share
Primary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • PostgreSQL vs MariaDB
    • Spark vs Impala
    • Datadog vs Splunk
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Predictive Analytics vs?Business Intelligence
    • AI vs Machine Learning vs Deep Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

Special Offer - All in One Data Science Bundle (360+ Courses, 50+ projects) Learn More